Aceleradores de partículas: 1. O que são aceleradores de partículas e como funcionam?

  • Data de publicação
Página 3 Pedagogia & Comunicação

Existem, no que se refere à forma, dois tipos de aceleradores: lineares e circulares. Nos aceleradores lineares, também chamados de linacs, o feixe de partículas praticamente percorre uma trajetória retilínea de uma extremidade a outra do acelerador.

Já nos aceleradores circulares, também chamados de cíclotrons, o feixe de partículas percorre trajetórias circulares por várias vezes antes de colidir com o alvo. Em cada volta, as partículas são mais aceleradas, devido à presença de campos elétricos que dão novos impulsos às partículas. Nesse caso, ímãs gigantes são utilizados para manter o feixe de partículas em sua trajetória circular.

É importante lembrar que partículas carregadas em movimento estão associadas a um campo magnético ao seu redor e se tornam um ímã. Outros ímãs gigantes, estrategicamente colocados ao longo do acelerador circular, interagem com o campo das partículas carregadas, alterando sua trajetória.

Esses ímãs gigantes representam a força constante em direção ao centro do círculo, força essa que mantém o feixe de partículas em trajetória circular, sem aumentar ou diminuir a energia das partículas que compõem o feixe.

Nos aceleradores de partículas cria-se uma situação de vácuo de alta precisão, para evitar que as partículas carregadas colidam com outros tipos de partículas ou pedaços de matéria.

Comparações

Comparando-se os dois tipos de aceleradores, temos que os circulares são bem mais eficientes, pois, a cada volta, as partículas recebem novos impulsos, aumentando a sua energia, o que permite que os pesquisadores consigam partículas com energias altíssimas antes das colisões.

Outra vantagem dos aceleradores circulares é a de que não precisam ser muito compridos para atingir as altas energias, já que o feixe de partículas dá várias voltas. Esse número de voltas também aumenta a chance de colisões entre partículas que se cruzam.

Com relação aos aceleradores lineares, são bem mais fáceis de construir, pois não necessitam de ímãs potentes para manter a trajetória circular (como no caso dos aceleradores circulares) do feixe de partículas, já que elas percorrerão uma trajetória retilínea.

Os aceleradores circulares também precisam de um grande raio para que as partículas atinjam as energias necessárias, o que torna seu custo bem maior do que o de um linear.

Outro aspecto importante considerado pelos pesquisadores é que partículas carregadas irradiam energia quando aceleradas - e quando trabalhamos com altas energias a radiação perdida é maior para acelerações circulares.

Esses são alguns aspectos importantes, que devem ser considerados por pesquisadores e financiadores de pesquisas antes da construção de um acelerador de partículas.

Primeiro acelerador

Podemos dizer que o predecessor dos aceleradores circulares foi o cíclotron construído, em 1929, por Ernest Lawrence, ganhador do prêmio Nobel em 1939. No cíclotron temos uma geometria circular dividida ao meio, onde prótons são injetados em sua parte central e, graças à mudança de polaridade do campo elétrico existente entre as duas metades, são acelerados e vão percorrendo órbitas maiores até deixarem o acelerador.

As órbitas circulares são possíveis graças à presença de um campo magnético uniforme, disposto perpendicularmente à base. Aqui energias da ordem de 106eV (1 Gev) são atingidas.

Esses princípios básicos foram de extrema importância para o desenvolvimento dos aceleradores circulares.

Superacelerador

O ano de 2008 representa um grande avanço na área da física de partículas, pois marca o início das pesquisas com um superacelerador de partículas que representa o maior empreendimento científico e tecnológico da atualidade.

Denominado LHC (Large Hadron Collider - Grande Colisor de Hádrons), com 27 km de circunferência, construído a 100 metros de profundidade e atingindo áreas da França e da Suíça, esse acelerador fará partículas nucleares (prótons, que são hádrons formados por dois quarks up e um down - uud) se chocarem com altíssimas energias.

Durante as colisões são esperadas energias em torno de TeV (trilhões de elétrons - volt). Comparem com a energia obtida com o cíclotron de Ernest Lawrence e vejam o avanço obtido!

O LHC está abrigado no CERN (Conseil Européen pour La Recherche Nucléaire - Conselho Europeu para Pesquisas Nucleares), hoje denominado European Laboratory for Particle Physics - Laboratório Europeu para Física de Partículas.

Como funciona um acelerador de partículas?

No século 20, uma quantidade enorme de novas partículas foram descobertas e a ideia sobre quais seriam as partículas elementares - as constituintes básicas da matéria, que não são formadas por nenhuma outra partícula - mudou.

Podemos dizer que a década de 1950 marca o surgimento da física de partículas como um novo ramo da física. E, junto com ele, um modelo para explicar essa nova gama de partículas e suas interações, conhecido como Modelo Padrão (Standard).

Para estudar essas pequenas partículas e suas interações, ou seja, para estudar a matéria em seu interior, os pesquisadores precisaram criar, artificialmente, condições em que as partículas se manifestassem com altíssimas energias. Para cumprir essa finalidade desenvolveram-se, aceleradores potentes, capazes de detectar antipartículas, como os antiprótons (em 1955) e os antinêutrons (1956).

Apenas para efeito de comparação, uma tomada comum pode resultar num choque de uma centena (102) de elétron-volt (eV), enquanto as altíssimas energias das partículas deveriam ser da ordem de 109 (o número um seguido de nove zeros!) a 1012 (o número um seguido de doze zeros!). Para tanto, foram desenvolvidos os aceleradores de partículas.

(Observação: um elétron-volt (eV) representa a energia que um elétron adquire ao ser acelerado por uma ddp (diferença de potencial) de 1 V. É uma unidade de energia comumente utilizada em física nuclear. 1 eV corresponde a 1,6 . 10-19 J).


O átomo de hidrogênio possui um próton (carga positiva)
no núcleo e um elétron (carga negativa) orbitando ao
redor desse núcleo, conforme o modelo atômico de Bohr
Funcionamento

O acelerador provoca um aumento de velocidade em uma partícula carregada por meio de campos eletromagnéticos - e essa partícula é atirada contra um ponto específico, onde existem detectores que registram o evento.

Dois conceitos físicos estão presentes aqui: o aumento de velocidade da partícula carregada, sua aceleração, ocorre devido à presença de um campo elétrico, sendo que a mudança de trajetória (quando é curvada) resulta da ação de um campo magnético.

Um exemplo simples de acelerador de partículas é a televisão, onde elétrons são liberados, acelerados por um campo elétrico e colimados por um campo magnético, atingindo a tela e formando a imagem.

Os aceleradores de partículas têm como princípio de funcionamento uma fonte de íons, geralmente obtida ionizando-se átomos de hidrogênio, constituídos por um próton em seu núcleo, juntamente com um nêutron e um elétron orbitando ao seu redor.

Para obter a fonte de íons os pesquisadores podem utilizar:

  • Elétrons: por meio do aquecimento de um metal ou por uma descarga elétrica, permitindo que a energia de ligação (entre o próton e elétron) seja vencida e resultando na separação dos elétrons. É o que ocorre na televisão, onde os elétrons são liberados pelo aquecimento de um filamento - e também no chamado tubo de raios catódicos. Assim, conseguem-se muitos elétrons separados, que podem ser direcionados pela ação de campos elétricos e magnéticos, resultando em feixes de partículas.
  • Prótons: obtidos pela ionização do hidrogênio, através do mesmo processo citado anteriormente. Afinal, se o elétron é separado do hidrogênio, ficamos com o próton também separado.
  • Antipartículas: obtidas quando partículas com altíssimas energias colidem com um alvo. Na colisão são criados pares de partículas e antipartículas por meio da troca de fótons ou glúons. Esses pares são separados com a utilização de campos magnéticos.
O átomo de hidrogênio possui um próton (carga positiva) no núcleo e um elétron (carga negativa) orbitando ao redor desse núcleo, conforme o modelo atômico de Bohr.

Aceleração e colisão

O feixe de partículas produzido é utilizado no acelerador, onde campos elétricos atraem ou repelem essas partículas carregadas, produzindo uma aceleração.

O sentido e a direção dessas partículas são controlados por meio de campos magnéticos associados a ímãs gigantes colocados ao longo do acelerador. Esses campos magnéticos têm que ser mais intensos à medida que a velocidade da partícula aumenta, pois, com a aceleração, essas partículas aumentam também a sua energia cinética, tornando-se mais difícil mudar sua trajetória. Com uma energia bem maior, o feixe de partículas colide com um alvo, onde detectores vão colher informações de acordo com o interesse dos pesquisadores.

Essas colisões podem ocorrer da seguinte maneira:

  • Alvo fixo - o feixe de partículas, após obter uma grande quantidade de energia no acelerador, colide com um alvo imóvel.
  • Alvo móvel - são utilizados dois feixes de partículas em sentidos contrários que se cruzarão. Consequentemente, algumas partículas irão colidir.


Comentários

Siga-nos:

Confira no Passeiweb

  • O primeiro voo do Homem no espaço

    Em 12 de abril de 1961 o homem decolava, pela primeira vez, rumo ao espaço. Em 2011, no aniversário de 50 anos deste fato, ocorreram comemorações no mundo inteiro e, principalmente, na Rússia.
  • Tsunami

    Tsunami significa "onda gigante", em japonês. Os tsunamis são um tipo especial de onda oceânica, gerada por distúrbios sísmicos.
 

Instituições em Destaque

Newsletter

Cadastre-se na nossa newsletter e receba as últimas notícias do Vestibular além de dicas de estudo:
 
 
 
-

Notícias e Dicas - Vestibular

Cadastre-se na nossa newsletter e receba as últimas do Vestibular e dicas de estudo: